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Additivity or “Law of Or-ing”

P (A ∪B) = P (A) + P (B)− P (AB)

“Law of Exhaustion” for EME

X
i

P (Ri) = 1

Multiplicative Rule or “Law of And-ing”

P (AB) = P (A)P (B|A) = P (B)P (A|B)
“given”

P (B|A) = P (AB)

P (A)

“conditional probability”
“renormalize the 
outcome space”

Independence:

Events A and B are independent if
P (A|B) = P (A)
so P (AB) = P (B)P (A|B) = P (A)P (B)
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Law of Total Probability or “Law of de-Anding”

H’s are exhaustive and 
mutually exclusive (EME)

P (B) = P (BH1) + P (BH2) + . . . =
X
i

P (BHi)

P (B) =
X
i

P (B|Hi)P (Hi)

“How to put Humpty-Dumpty back together again.”
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Example:  A barrel has 3 minnows and 2 trout, with 
equal probability of being caught.  Minnows must 
be thrown back.  Trout we keep.

What is the probability that the 2nd fish caught is a 
trout?

H1 ≡ 1st caught is minnow, leaving 3 + 2
H2 ≡ 1st caught is trout, leaving 3 + 1
B ≡ 2nd caught is a trout
P (B) = P (B|H1)P (H1) + P (B|H2)P (H2)

= 2
5 · 35 + 1

4 · 25 = 0.34
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Bayes Theorem

(same picture as before)

P (Hi|B) =
P (HiB)

P (B)

=
P (B|Hi)P (Hi)P
j P (B|Hj)P (Hj)

We usually write this as

P (Hi|B) ∝ P (B|Hi)P (Hi)

Law of And-ing

Law of de-Anding

this means, “compute the normalization by using the 
completeness of the Hi’s”

Thomas Bayes
1702 - 1761
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• As a theorem relating probabilities, Bayes is 
unassailable

• But we will also use it in inference, where the H’s are 
hypotheses, while B is the data
– “what is the probability of an hypothesis, given the data?”
– some (defined as frequentists) consider this dodgy
– others (Bayesians like us) consider this fantastically powerful 

and useful
– in real life, the war between Bayesians and frequentists is long 

since over, and most statisticians adopt a mixture of techniques
appropriate to the problem.

• Note that you generally have to know a complete set of 
EME hypotheses to use Bayes for inference
– perhaps its principal weakness
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Example:  Trolls Under the Bridge

Trolls are bad.  Gnomes are benign.
Every bridge has 5 creatures under it:

20% have TTGGG (H1)
20% have TGGGG (H2)
60% have GGGGG (benign) (H3)

Before crossing a bridge, a knight captures one of the 5 
creatures at random.  It is a troll.  “I now have an 80% 
chance of crossing safely,” he reasons, “since only the case

20% had TTGGG (H1) now have TGGG
is still a threat.”
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P (H1|T ) =
2
5 · 15

2
5 · 15 + 1

5 · 15 + 0 · 35
=
2

3

P (Hi|T ) ∝ P (T |Hi)P (Hi)
so,

The knight’s chance of crossing safely is actually only 33.3%
Before he captured a troll (“saw the data”) it was 60%.
Capturing a troll actually made things worse!  [well…discuss]

(80% was never the right answer!)
Data changes probabilities!
Probabilities after assimilating data are called posterior 
probabilities.
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Commutivity/Associativity of Evidence

P (Hi|D1D2) desired
We see D1:
P (Hi|D1) ∝ P (D1|Hi)P (Hi)

Then, we see D2:
P (Hi|D1D2) ∝ P (D2|HiD1)P (Hi|D1)
But,
= P (D2|HiD1)P (D1|Hi)P (Hi)
= P (D1D2|Hi)P (Hi)

this is now a prior!

this being symmetrical shows that we would get the same answer 
regardless of the order of seeing the data

All priors P (Hi) are actually P (Hi|D),
conditioned on previously seen data! Often
write this as P (Hi|I). background information



IMPRS Summer School 2009, Prof. William H. Press 10

Our next topic is Bayesian Estimation of 
Parameters.  We’ll ease into it with…

• Of 3 prisoners (A,B,C), 2 will be released tomorrow.
• A, who thinks he has a 2/3 chance of being released, asks 

jailer for name of one of the lucky – but not himself.
• Jailer says, truthfully, “B”.
• “Darn,” thinks A, “now my chances are only ½, C or me”.

A

Here, did the data (“B”) change the probabilities?

The Jailer’s Tip: 
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Further, suppose the jailer is not indifferent
about responding “B” versus “C”.

P (SB|BC) = x, (0 ≤ x ≤ 1)

“says B”

P (A|SB) = P (AB|SB) + P (AC |SB)

=
P (SB|AB)P (AB)

P (SB|AB)P (AB) + P (SB|BC)P (BC) + P (SB|CA)P (CA)

=
1
3

1 · 13 + x · 13 + 0
=

1

1 + x

0
1 1/3

x

So if A knows the value x, he can calculate his chances.
If x=1/2, his chances are 2/3, same as before; so he got no new information.
If x≠1/2, he does get new info – his chances change.

But what if he doesn’t know x at all?
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“Marginalization” (this is important!)

(e.g., Jailer’s Tip):

P (A|SBI) =
R
x
P (A|SBxI) p(x|I) dx

=
R
x

1
1+x p(x|I) dx

law of de-Anding

• When a model has unknown, or uninteresting, 
parameters we “integrate them out” …

• Multiplying by any knowledge of their distribution
– At worst, just a prior informed by background information
– At best, a narrower distribution based on data

• This is not any new assumption about the world
– it’s just the Law of de-Anding
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What should Prisoner A take for p(x) ?
Maybe the “uniform prior”?

p(x) = 1, (0 ≤ x ≤ 1)
P (A|SBI) =

R 1
0

1
1+xdx = ln 2 = 0.693

p(x) = δ(x− 1
2 ), (0 ≤ x ≤ 1)

P (A|SBI) = 1
1+1/2 = 2/3

Not the same as the “massed prior at x=1/2”
“Dirac delta function”

substitute value and 
remove integral

x = P (SB |BC), (0 ≤ x ≤ 1)
We are trying to estimate a parameter

This is a sterile exercise if it is just a debate about priors.
What we need is data! Data might be a previous history 
of choices by the jailer in identical circumstances.

BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB
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BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB

N = 35, NB = 15, NC = 20

We hypothesize (might later try to check) that these are i.i.d. “Bernoulli 
trials” and therefore informative about x

“independent and identically distributed”

We now need P (data|x)

(What’s wrong with: x=15/35=0.43?  
Hold on…)

P (data|x)
is the (forward) statistical model in both frequentist vs. Bayesian 
contexts.  But it means something slightly different in each of the 
two.

A forward statistical model assumes that all parameters, assignments, 
etc., are known, and gives the probability of the observed data set.  It is 
almost always the starting point for a well-posed analysis.  If you can’t 
write down a forward statistical model, then you probably don’t understand 
your own experiment or observation!
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the frequentist considers the universe of what might have been, imagining 
repeated trials, even if they weren’t actually tried:

since i.i.d. only the N ’s can matter (a so-called “sufficient statistic”).

P (data|x) =
µ
N

NB

¶
xNB (1− x)NC

prob. of exact sequence seen

no. of equivalent arrangements

¡
n
k

¢
= n!

k!(n−k)!

the Bayesian considers only the exact data seen:

P (x|data) ∝ xNB (1− x)NC p(x|I)

No binomial coefficient, since independent of x and absorbed in the 
proportionality.  Use only the data you see, not “equivalent arrangements”
that you didn’t see.  This issue is one we’ll return to, not always entirely 
sympathetically to Bayesians (e.g., goodness-of-fit).

prior is still with us
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In[7]:= num = x^ nb H1 − xL^Hnn − nbL

Out[7]= H1 − xL−nb+nn xnb

In[8]:= denom = Integrate@num, 8x, 0, 1<,
GenerateConditions → FalseD

Out[8]=
Gamma@1 + nbD Gamma@1 − nb + nnD

Gamma@2 + nnD

In[9]:= p@x_D = num êdenom

Out[9]=
H1 − xL−nb+nn xnb Gamma@2 + nnD

Gamma@1 + nbD Gamma@1 − nb + nnD

In[12]:= Plot@p@xD ê. 8nn → 35, nb → 15<, 8x, 0, 1<,
PlotRange → All, Frame → TrueD

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Out[12]=  Graphics 

To get a normalized probability, we must integrate the denominator:

This is the Bayesian estimate of 
the parameter x, namely p(x)

we’ll assume a uniform prior
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In[20]:= Simplify@D@p@xD, xDD

Out[20]= −
H1 − xL−1−nb+nn x−1+nb H−nb + nn xL Gamma@2 + nnD

Gamma@1 + nbD Gamma@1 − nb + nnD

In[21]:= Solve@Simplify@D@p@xD, xDD 0, xD

Out[21]= 99x →
nb
nn

==

In[23]:= mean = Integrate@x p@xD, 8x, 0, 1<,
GenerateConditions → FalseD

Out[23]=
1 + nb
2 + nn

In[27]:= sigma =

Sqrt@FullSimplify@
Integrate@x ^2 p@xD, 8x, 0, 1<,

GenerateConditions → FalseD − mean^2DD

Out[27]= $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H1 + nbL H1 − nb + nnL
H2 + nnL2 H3 + nnL

Properties of our Bayesian estimate of x:

“maximum likelihood” answer is to estimate x as exactly the fraction seen

mean is the 1st moment

standard error involves the 
2nd moment, as shown

This shows how p(x)
gets narrower as the 
amount of data 
increases.

derivative has this simple factor



IMPRS Summer School 2009, Prof. William H. Press 18

The basic paradigm of Bayesian parameter estimation :

• Construct a statistical model for the 
probability of the observed data as a 
function of all parameters

– treat dependency in the data correctly
• Assign prior distributions to the parameters

– jointly or independently as appropriate
– use the results of previous data if available

• Use Bayes law to get the (multivariate) 
posterior distribution of the parameters

• Marginalize as desired to get the 
distributions of single (or a manageable 
few multivariate) parameters

Cosmological models are typically fit to many 
parameters.  Marginalization yields the distribution of 
parameters of interest, here two, shown as contours.


