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Central Limit Theorem
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Can always subtract off the means, then add back later.

Then

Whoa! It better have a 
convergent Taylor series 
around zero! (Cauchy 
doesn’t, e.g.)

So, S is normally distributed

These terms decrease with N, but how fast?

pS(·) ∼ Normal(0, 1
N2

P
σ2i )
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NS =
P
Xi

Moreover, since

Var(NS) = N2Var(S)and

pS(·) ∼ Normal(0, 1
N2

P
σ2i )

pPXi(·) ∼ Normal(0,
P

σ2i )

If N is large enough, and if the higher moments are well-enough behaved, 
and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but 
convergence to Normal is slow and/or highly nonuniform.  (This can affect p-
values for tail tests, as we will soon see.)

it follows that the simple sum of a large number of 
r.v.’s is normally distributed, with variance equal to 
the sum of the variances:
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Just as moments are expectations of powers of a single r.v., you can form 
expectations of products of more than one r.v.

The only really important one is the covariance:

For multiple r.v.’s, all the possible covariances form a (symmetric) matrix:

Notice that the diagonal elements are the variances of the individual variables.

The variance of any linear combination of r.v.’s is a quadratic form in C :

This also shows that C is positive definite, so it can be visualized as an ellipsoid in the 
space of the r.v.’s., where the directions are the different linear combinations.
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Multivariate Normal Distributions

Generalizes Normal (Gaussian) to M-dimensions
Like 1-d Gaussian, completely defined by its mean and (co-)variance
Mean is a M-vector, covariance is a M x M matrix

The mean and covariance of r.v.’s from this distribution are

Σ = h(x− μ)⊗ (x− μ)iμ = hxi
It should not be obvious that this covariance in fact obtains from the above 
distribution!  Here’s the sketch of a proof (you fill in the words!):

(I don’t know an elementary 
proof, i.e., without a matrix 
decomposition.  Is there one?)
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Reduced dimension properties of multivariate normal

1.  Any slice through a m.v.n. is a m.v.n (“constraint” or “conditioning”)

2. Any projection of a m.v.n. is a m.v.n (“marginalization”)

You can prove both assertions by “completing 
the square” in the exponential, producing an 
exponential in (only) the reduced dimension 
times an exponential in (only) the lost 
dimensions.  Then the second exponential is 
either constant (slice case) or can be 
integrated over (projection case).
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Other Cholesky tricks, e.g., generate multivariate normal deviates:

So, just take: and you get a multivariate normal deviate!
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A related, useful, Cholesky trick is to draw error ellipses (ellipsoids, …)

So, locus of points at 1 standard deviation is

If z is on the unit circle (sphere, …) then

function [x y] = errorellipse(mu,sigma,stdev,n)
L = chol(sigma,'lower');
circle = [cos(2*pi*(0:n)/n); sin(2*pi*(0:n)/n)].*stdev;
ellipse = L*circle + repmat(mu,[1,n+1]);
x = ellipse(1,:);
y = ellipse(2,:);

plot(i1llen,i2llen,'+b');
hold on
[xx yy] = errorellipse(mu,sig,1,100);
plot(xx,yy,'-r');
[xx yy] = errorellipse(mu,sig,2,100);
plot(xx,yy,'-r')
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Weighted Nonlinear Least Squares Fitting
a.k.a. χ2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation

(with uniform prior and maybe
some other normality assumptions) 

these are not all exactly identical, 
but they’re real close!

measured values supposed to be a model, plus 
an error term

the errors are Normal, either independently…

… or else with errors correlated in some known 
way (e.g., multivariate Normal)

We want to find the parameters of the model b from the data.
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Do the Bayes thing!

Now the idea is:  Find (somehow!) the parameter value b0 that 
minimizes χ2 .

For linear models, you can solve linear “normal equations” or, 
better, use Singular Value Decomposition.  See NR3 section 15.4

In the general nonlinear case, you have a general minimization 
problem, for which there are various algorithms, none perfect.

Those parameters are the MLE. (Note that it is implictly Bayes with 
uniform prior.)

How “accurate” are they?
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Taylor series:

So, while exploring the χ2 surface to find its minimum, we must also 
calculate the Hessian (2nd derivative) matrix at the minimum.

Then

with

covariance (or “standard error”) matrix 
of the fitted parameters

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

We have obtained the covariance structure of all the parameters, and indeed 
(at least in CLT normal approximation) their entire joint distribution!

But what if we want confidence limits on one parameter at a time?
Or maybe a confidence ellipse on two parameters? 
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Condition or Marginalize uninteresting parameters?  (Know the difference!)

Condition: (this is rare!) Fix uninteresting parameters at specified values.

In submatrix of interesting rows and columns is new

Take matrix inverse if you want their covariance
(If you fix parameters at other than b0, the mean also shifts – exercise for reader!)

Marginalize: (this is usual) Ignore (integrate over) uninteresting parameters.

In submatrix of interesting rows and columns is new

Take matrix inverse if you want the distribution of interestings (see top line).

Special case of one variable at a time: Just take diagonal components in 

Why does this work?  Roughly: (1) any marginalization of Gaussian is Gaussian [complete the 
square to separate interesting vs. uninteresting], and (2) variances are pairwise expectations and 
don’t depend on whether other parameters are interesting or not.
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By the way, don’t confuse the “covariance matrix of the fitted parameters” with the 
“covariance matrix of the data”.  For example, the data covariance is often 
diagonal (uncorrelated σi’s), while the parameters covariance is essentially never
diagonal!

Example:

If the data has correlated errors, then the starting point for χ2 is:

instead of
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Confidence intervals or regions

The variances of one parameter at a time imply confidence intervals 
as for an ordinary 1-dimensional normal distribution:

(Remember to take the square root of the 
variances to get the standard deviations!)

If you want to give confidence regions for more than one parameter
at a time, you have to decide on a shape, since any shape 
containing 95% (or whatever) of the probability is a 95% confidence 
region!

It is conventional to use contours of probability density as the 
shapes (= contours of Δχ2) since these are maximally compact.

But which Δχ2 contour contains 95% of the probability?
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What Δχ2 contour in ν dimensions contains some percentile probability?

Rotate and scale the covariance to make it spherical.
(Linear, so contours still contain same probability.)

Now, each dimension is an independent Normal, so Chisquare(ν) is by 
definition the distribution of radius squared (sum of ν individual t2 values)!
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Frequentists love MLE estimates (and not just the case with a Normal 
error model) because they have provably nice properties asymptotically

• Consistency: converges to true value of the parameters
• Equivariance: estimate of function of parameter = function of 

estimate of parameter
• asymptotically Normal
• asymptotically efficient (optimal): among estimators with the above 

properties, it has the smallest variance

Bayesians tolerate MLE estimates because they are almost Bayesian –
even better if you put the prior back into the minimization.

But Bayesians keep in mind that we live in a non-asymptotic world!

The “Fisher Information Matrix” is another name for the Hessian of the log 
probability (or, rather, log likelihood):

except that, strictly speaking, it is an 
expectation over the population


