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Until now, we have assumed that, for some value of the parameters b
the model               is correct.

That is a very Bayesian thing to do, since Bayesians start with an 
EME set of hypotheses.  It also makes it difficult for Bayesians to deal 
with the notion of a model’s goodness of fit.

Goodness of Fit

So we must now become frequentists for a while!

Suppose that the model               does fit.  This is the “null hypothesis”.

Then the “statistic” is the sum of N t2-values.

So, if we imagine repeated experiments (which Bayesians refuse to do),
the statistic should be distributed as Chisquare(N).

If our experiment is very unlikely to be from this distribution, we 
consider the model to be disproved.

(not quite)
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In general, the idea of p-value (tail) tests is to see how extreme is 
the observed data relative to the distribution of hypothetical repeats 
of the experiment under some “null hypothesis” H0.

If the observed data is too extreme, the null hypothesis is 
disproved.  (It can never be proved.)

There are some fishy aspects of tail tests, but they have 
one big advantage over Bayesian methods: You don’t 
have to enumerate all the alternative hypotheses (“the 
unknown unknowns”).

If the null hypothesis is true, then p-values are uniformly distributed in 
(0,1), in principle exactly so.
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First consider a hypothetical situation where the data has
linear constraints:

p(t) =
Y
i

p(ti) ∝ exp
Ã
−12

X
i

t2i

!

χ2 is squared distance from origin
P
t2i

joint distribution on all the 
t’s, if they are independent

Linear constraint:

a hyper plane through the origin 
in t space!

Degrees of Freedom:  Why is χ2 with N data points “not quite”
the sum of N t2-values?  Because d.o.f.’s are reduced by constraints.
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Constraint is a plane cut.  
Any cut through an ellipsoid 
is an ellipse; any cut through 
a sphere is a circle.

So the distribution of distance from origin is the same as a multivariate normal 
“ball” in the lower number of dimensions.  Thus, each linear constraint reduces ν
by exactly 1.

We don’t have explicit constraints on the yi’s.  But as the yi’s wiggle around 
(within their errors) we do have the constraint that we want to keep the 
MLE estimate b0 fixed.

So by the implicit function theorem, there are M (number of parameters) 
approximately linear constraints on the yi ‘s.  So                         , the so-
called number of degrees of freedom (d.o.f.).
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You can get a statistic that is “accurately” chi-square either by summing 
(any number of) terms that are accurately squares of normal t-values, 

or by summing a large number of terms that individually have the 
correct mean and variance.  This uses the CLT, so the exactness of 
chi-square is no better than its normal approximation.

Compute moments of chi-square with 1 d.f.:

So, μ = 1, σ2 = 3− 1 = 2

Hence, Chisquare(ν)→ Normal(ν,
√
2ν) as ν →∞

The Poisson-count pitfall
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If you are going to rely on the CLT and sum up lots of not-exactly-t bins, it is really 
important that they have the expected mean and variance.

Example: Chi-square test with small numbers of Poisson counts in some or all 
bins.  (People often get this wrong!)

Recall Poisson: p(n) = e−μ μ
n

n!

Mean and variance are both = μ

So, given a set of Poisson counts and expected values           it is very 
tempting to write

(xi,μi)

χ2 =
X
i

(xi − μi)2
μi

The problem is that this is not Chisquare distributed.

And, it is not for any value of ν, even as the number 
of data points becomes large! Let’s see why.

∼ Normal(ν,
√
2ν)
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So this χ2 is not Chi-square distributed!  Rather, asymptotically,

What about bins with μ near zero?  (Decide in advance!)

χ2 ∼ Normal
Ã
ν, 2ν +

X
i

μ−1i

!
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Tips on tail tests:

Don’t sweat a p-value like 0.06.  If you really need to know, the only real test
is to get significantly more data.  Rejection of the null hypothesis is 
exponential in the amount of data.

In principle, p-values from repeated tests s.b. exactly uniform in (0,1).  In 
practice, this is rarely true, because some “asymptotic” assumption will have 
crept in when you were not looking. All that really matters is that (true) 
extreme tail values are being computed with moderate fractional accuracy.  
You can go crazy trying to track down not-exact-uniformity in p-values.  (I 
have!)

need more data

enough data
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The χ2 versus Δχ2 pitfall

Goodness-of-fit with ν = Ν − Μ degrees of freedom:

we expect

Confidence intervals for parameters b:

we expect

How can        have any meaning in the presence of             ?

Answer: χ2 and Δχ2 are different concepts!

χ2 increases linearly with ν = Ν − Μ

Δχ2 increases as N (number of terms in sum), but also decreases
as   (N -1/2)2, since b becomes more accurate with increasing N :

quadratic, because at minimum
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What is the uncertainty in quantities other than the fitted coefficients:

Method 1: Linearized propagation of errors

f ≡ f(b) = f(b0) + f 0 · b1
hfi = hf(b0)i+ f 0 · hb1i = f(b0)­
f2
®
− hfi2 = 2f(b0)(f 0 · hb1i) +

­
(f 0 · b1)2

®
= f 0 · hb1 ⊗ b1i · f 0
= f 0 ·Σ · f 0



IMPRS Summer School 2009, Prof. William H. Press 12

Method 2: Sample from the posterior distribution

1.  Generate a large number of (vector) b’s

2.  Compute your          separately for each b

3.  Histogram

Note that b is typically (close to) m.v. normal because of the CLT, but your 
(nonlinear) f may not, in general, be anything even close to normal!
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• We applied some end-to-end process to a data set
and got a number f out

• The data set was drawn from a population
– which we don’t get to see, unfortunately
– we see only a sample of the population

• We’d like to draw new data sets from the population,
reapply the process, and see the distribution of answers
– this would tell us how accurate the original answer was
– but we can’t: we don’t have access to the population

• However, the data set itself is an estimate of the population pdf!
– in fact, it’s the only estimate we’ve got!

• We draw – with replacement – from the data set and carry out the 
proposed program

– Bootstrap theorem [glossing over technical assumptions]: The 
distribution of any resampled quantity around its full-data-set value 
estimates (naively: “has the same histogram as”) the distribution of the 
data set value around the population value. 

Method 3: Bootstrap resampling of the data
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Sampling the posterior “honors” the stated measurement errors.
Bootstrap doesn’t.  That can be good!

Suppose (toy example) the “statistic” is

then the posterior probability is

Note that this depends on the σ’s!

The bootstrap (here noticeably discrete) doesn’t depend on the σ’s.  In 
some sense it estimates them, too.

So, if the errors were badly underestimated, sampling the posterior would give 
too small an uncertainty, while bootstrap would still give a valid estimate.

If the errors are right, both estimates are valid. Notice 
that the model need not be correct.  Both procedures 
give valid estimates of the statistical uncertainty of 
parameters of even a wrong (badly fitting) model.  But 
for a wrong model, your interpretation of the 
parameters may be misleading!
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Compare and contrast bootstrap resampling and sampling from the posterior

Both have same goal:   Estimate the accuracy of fitted parameters.

• Bootstrap is frequentist in outlook
– draw from “the population”
– even if we have only an estimate of it 

(the data set)
• Easy to code but computationally 

intensive
– great for getting your bearings
– must repeat your basic fitting 

calculation over all the data100 or 1000 
times

• Applies to both model fitting and 
descriptive statistics

• Fails completely for some statistics
– e.g. (extreme example) “harmonic 

mean of distance between consecutive 
points”

– how can you be sure that your statistic 
is OK (without proving theorems)?

• Doesn’t generalize much
– take it or leave it!

• Sampling from the posterior is 
Bayesian in outlook

– there is only one data set and it is 
never varied

– what varies from sample to sample is 
the goodness of fit

– we don’t just sit on the (frequentist’s) 
ML estimate, we explore around

• In general harder to implement
– we haven’t learned how yet, except in 

the simple case of an assumed  
multivariate normal posterior

– will come back to this next, when we do 
Markov Chain Monte Carlo (MCMC)

– may or may not be computationally 
intensive (depending on whether there 
are shortcuts possible in computing the 
posterior)

• Rich set of variations and 
generalizations are possible

(patients not polyps)


