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Markov Chain Monte Carlo (MCMC)

Data set

Parameters

We want to go beyond simply maximizing
and get the whole Bayesian posterior distribution of 

Bayes says this is proportional to
but with an unknown proportionality constant (the Bayes denominator). It 
seems as if we need this denominator to find confidence regions, e.g., 
containing 95% of the posterior probability. 

With such a sample, we can compute any quantity of interest 
about the distribution of     , e.g., confidence regions, means,
standard deviations, covariances, etc. 

(sorry, we’ve changed notation!)

But no! MCMC is a way of drawing samples
from the distribution
without having to know its normalization!  
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Two ideas due to Metropolis and colleagues make this possible:

1. Instead of sampling unrelated points, sample a Markov chain
where each point is (stochastically) determined by the previous one
by some chosen distribution

Although locally correlated, it is possible to make this sequence ergodic,
meaning that it visits every x in proportion to π(x).

2.  Any distribution                       that satisfies 

(“detailed balance”) will be such an ergodic sequence!

Deceptively simple proof: Compute distribution of x1’s successor point

So how do we find such a p(xi|xi-1) ?
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Metropolis-Hastings algorithm:

Pick more or less any “proposal distribution”
(A multivariate normal centered on x1 is a typical example.)

Then the algorithm is:

1. Generate a candidate point x2c by drawing from the proposal distribution 
around x1

2. Calculate an “acceptance probability” by
Notice that the q’s
cancel out if symmetric 
on arguments, as is a 
multivariate Gaussian

3. Choose x2 = x2c with probability α, x2 = x1 with probability (1-α)

So,

It’s something like: always accept a proposal that increases the probability, and 
sometimes accept one that doesn’t.  (Not exactly this because of ratio of q’s.)
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Proof:

which is just detailed balance!

(“Gibbs sampler”, beyond our scope, is a special case of Metropolis-
Hastings.  See, e.g., NR3.)
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Let’s do an MCMC example to show how it can be used with models that might be 
analytically intractable (e.g., discontinuous or non-analytic).
[This is the example worked in NR3.]

The lazy birdwatcher problem

• You hire someone to sit in the forest and look
for mockingbirds.

• They are supposed to report the time of each sighting ti
– But they are lazy and only write down (exactly) every k1 sightings (e.g., k1= every 3rd)

• Even worse, at some time tc they get a young child to do the counting for them
– He doesn’t recognize mockingbirds and counts grackles instead
– And, he writes down only every k2 sightings, which may be different from k1

• You want to salvage something from this data
– E.g., average rate of sightings of mockingbirds and grackles
– Given only the list of times
– That is, k1, k2, and tc are all unknown nuisance parameters

• This all hinges on the fact that every second (say) event in a Poisson process is 
statistically distinguishable from every event in a Poisson process at half the mean rate

– same mean rates
– but different fluctuations
– We are hoping that the difference in fluctuations is enough to recover useful information

• Perfect problem for MCMC
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Waiting time to the kth event in a Poisson process with rate λ is distributed 
as Gamma(k,λ)

And non-overlapping intervals are independent:

So

Proof:

p(τ)dτ = P (k − 1 counts in τ)× P (last dτ has a count)
= Poisson(k − 1,λτ)× (λ dτ)

=
(λτ )k−1

(k − 1)! e
−λτλ dτ
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In the acceptance probability the ratio of the q’s in

is just x2c/x1, because

What shall we take as our proposal generator?
This is often the creative part of getting MCMC to work well!

For tc, step by small additive changes (e.g., normal)

For λ1 and λ2, step by small multiplicative changes (e.g., lognormal)

Bad idea: For k1,2 step by 0 or ±1
This is bad because, if the λ’s have converged to about the right rate, then a change in 
k will throw them way off, and therefore nearly always be rejected.  Even though this 
appears to be a “small” step of a discrete variable, it is not a small step in the model!

Good idea: For k1,2 step by 0 or ±1, also changing λ1,2 so as to 
keep λ/k constant in the step

This is genuinely a small step, since it changes only the clumping statistics, by the 
smallest allowed amount.
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Let’s try it.
We simulate 1000 ti’s with the secretly known λ1=3.0, λ2=2.0, tc=200, k1=1, k2=2

Start with wrong values  λ1=1.0, λ2=3.0, tc=100, k1=1, k2=1 

“burn-in” period while it locates
the Bayes maximum

ergodic period during which we record 
data for plotting, averages, etc.
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Histogram of quantities during a long-enough ergodic time

These are the actual Bayesian posteriors of the model!

Could as easily do joint probabilities, covariances, etc., etc.

Notice does not converge to being centered on the true values, 
because the (finite available) data is held fixed.  Convergence is to the 
Bayesian posterior for that data.


