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A general idea for dealing with events which can be 
in one of several components – and you don’t know 
which.
Instead of doing general case, we’ll illustrate an 
astronomical example.

• Hubble constant H0 was highly contentious as 
late as the late 1990s.

• Measurement by classical astronomy very 
difficult

– each a multi-year project
– calibration issues

• Between 1930 and 2000 credible 
measurements ranged from 30 to 120 
(km/s/Mpc)

– many claimed small errors
• Consensus view was “we just don’t know H0 .

– or was it just failure to apply an adequate 
statistical model to the existing data?

Mixture Models

this one is a 3-component mixture
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Grim observational situation:  Not the range of values, but the inconsistency of 
the claimed errors.  This forbids any kind of “just average”, because goodness-
of-fit rejects the possibility that these experiments are measuring the same value.
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Here, the mixture will be “some experiments are right, some are wrong, 
and we don’t know which are which”

probability that a “random”
experiment is right

bit vector of which experiments 
are right or wrong, e.g. 
(1,0,0,1,1,0,1…)

now, expand out the prior and make reasonable assumptions about 
conditional independence:

p#(v=1) (1-p) #(v=0)

“law of total probability”

Bayes
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any big enough value

now you stare at this a while and realize that the sum over v is just a 
multinomial expansion

So it is as if each event were sampled from the linear mixture of probability 
distributions.  We see that this is not just heuristic, but the actual, exact 
marginalization over all possible assignments of events to components.



IMPRS Summer School 2009, Prof. William H. Press 6

And the answer is…

• This is not a Gaussian, it’s just whatever shape it came out from the data
• It’s not even necessarily unimodel (although it is for this data)

– If you leave out some of the middle-value experiments, it splits to be bimodal
– Thus showing that this method is not “tail-trimming”

from Wilkinson Microwave Anisotropy 
Probe satellite 5-year results (2008)

from WMAP + supernovae



IMPRS Summer School 2009, Prof. William H. Press 7

Similarly, we can get the probability that each experiment is correct (that is, 
the assignment of events to components):

and if P(p) is uniform in (0,1) 
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Or the probability distribution of p (probability of a measurement 
being correct a priori):

(this is of course not universal, but depends on the field and its current state)

e.g., take uniform prior on 
P(p)

mixture automatically 
marginalizes on v
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Gaussian Mixture Models (GMMs)

• What if the components have unknown parameters
– like location and shape in N-dim space

• Can’t assign the events to components
until we know the components
– but can’t define the components until we

know which events are assigned to them
– the trick is to find both, self-consistently

• EM (expectation-maximization) methods are a general iterative 
method for dealing with problems like this

• “Gaussian Mixture Models” are the simplest example
– the components are Gaussians defined by a mean and covariance

• Note that not all mixture models are EM methods, and not all 
EM methods are mixture models!
– EM methods can also deal with missing data, e.g.  
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“probabilistic assignment” of a data point to a component!

overall likelihood of the model

specify the model as a mixture of Gaussians

M dimensions
k = 1 . . .K Gaussians
n = 1 . . . N data points
P (k) population fraction in k
P (xn) model probability at xn

Key to the notational thicket:

Goal is to find all of the above, starting with only the 
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Expectation, or E-step: suppose we know the model, but not the 
assignment of individual points.
(so called because it’s probabilistic assignment by expectation value)

Maximization, or M-step: suppose we know the assignment of 
individual points, but not the model.

(so called because [theorem!] the overall likelihood increases at each step)

• Can be proved that alternating E and M steps converges to (at least a local) 
maximum of overall likelihood

• Convergence is sometimes slow, with long “plateaus”
• Often start with k randomly chosen data points as starting means, and equal (usually 

spherical) covariance matrices
– but then had better try multiple re-starts
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Because Gaussians underflow so easily, a couple of tricks are important:

1) Use logarithms!

2) Do the sum

by the “log-sum-exp” formula:

(The code in NR3 implements these tricks.)
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Let’s look in 2 dimensions at an “ideal”, and then a “non-ideal”, example.

Ideal: we generate Gaussians, then, we fit to Gaussians

mu1 = [.3 .3];
sig1 = [.04 .03; .03 .04];
mu2 = [.5 .5];
sig2 = [.5 0; 0 .5];
mu3 = [1 .5];
sig3 = [.05 0; 0 .5];
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This “ideal” example converges rapidly to the right answer.

Use GMM class in NR3:
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For a non-ideal example, here is some biological data on the (log10) lengths 
of the 1st and 2nd introns in genes.  We can see that something non-GMM is 
going on!  For general problems in >2 dimensions, it’s often hard to visualize 
whether this is the case or not, so GMMs get used “blindly”.

spliceosome can’t deal 
with introns <100 in length, 
so strong evolutionary 
constrant

except that, like everything 
else in biology, there are 
exceptions  (these are not 
“experimental error” in the 
physics sense!)
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Three component model converges rapidly to something reasonable:
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But, we don’t always land on the same local maximum, although there seem to be 
just a handfull. 

(One of these presumably has the higher likelihood.)
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Eight components:

The ones with higher likelihood are pretty good as summaries of the data distribution 
(absent a predictive model).  But the individual components are unstable and have little 
or no meaning.  “Fit a lot of Gaussians for interpolation, but don’t believe them.”
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Variations on the theme of GMMs:

• You can constrain the Σ matrices to be diagonal
– when you have reason to believe that the components individually have 

no cross-correlations (align with the axes)

• Or constrain them to be multiples of the unit matrix
– make all components spherical

• Or fix Σ = ε 1 (infinitesimal times unit matrix)
– don’t re-estimate Σ, only re-estimate μ
– this assigns points 100% to the closest cluster (so don’t actually need to 

compute any Gaussians, just compute distances)
– it is called “K-means clustering”

• kind of GMM for dummies
• widely used (there are a lot of dummies!)
• probably always better to use spherical GMM (middle bullet above)


