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Introduction

Moving (or sliding window) averages are widely used to estimate the present
parameters of noisy nonstationary time series. This is a difficult undertak-
ing almost by definition unless the nonstationarity is in some sense “slow”,
allowing the accumulation of a sufficient number of samples for a meaning-
ful measurement. That difficulty leads us to here consider moving averages
in general and to ask what are the underlying principles that should gov-
ern their construction. In particular, should we use an equal-weights simple
moving average (SMA), or something more complicated like an exponentially
weighted moving average (EWMA)? Or should we use something entirely dif-
ferent?

Sliding window averages are also used in a completely different applica-
tion, that of data smoothing. For that case, there are many better techniques
than those described here, for example Fourier filtering in the frequency do-
main, or Savitzky-Golay filtering. Here, the applications of interest are dis-
tinguished by our intense interest in the present moment, and our access to
data only from the present and past, not the future. Financial time series
furnish the most relevant examples.
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1 Simple Moving Average

The simple moving average (SMA) estimates the expectation present value
〈x〉 as a uniformly weighted mean of the most recent N data points,

x̂sma ≡
N−1∑
i=0

wixi, wi ≡
1

N
,

N−1∑
i=0

wi = 1 (1)

written in this way to call out its structure as a weighted mean with uniform
weights. Here x0 is the most recent data point, with x1, x2, . . . extending by
uniform time steps to the past.

The estimator x̂sma is unbiased, as can be seen by

〈x̂sma〉 =

〈
N−1∑
i=0

wixi

〉
=

(
N−1∑
i=0

wi

)
〈xi〉 = 〈x〉 (2)

Writing 〈xi〉 = 〈x〉 is the necessary approximation when we know nothing
about the non-stationary nature of the series except that its changes are slow.
The variance of x̂ is

Var(x̂sma) =
N−1∑
i=0

w2
i Var(xi) =

(
N−1∑
i=0

w2
i

)
Var(x) =

1

N
Var(x) (3)

In other words, the standard deviation of the estimator, σ(x̂sma), decreases
as the square root of the sample size, N−1/2.

We might want to estimate not just the present value of a nonstationary
series, but also the present variance of its values, Var(x). A sample estimate
is

V̂ar(x) ≡

(
N−1∑
i=0

wix
2
i

)
−

(
N−1∑
i=0

wixi

)2

(4)

(“the mean of the square minus the square of the mean”). As is well known,
this estimator is only asymptotically unbiased, because one can calculate
that, for the SMA, 〈

V̂ar(x)sma

〉
=

(
N − 1

N

)
Var(x) (5)

Below, we will give a derivation of equation (5) in a more general setting.
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1.1 SMA is Not Ideal

There are two reasons to be dissatisfied with the simple moving average.
First, since we are estimating the present value of the mean or variance, it
seems perverse to count equally data as old as sample number N − 1. Surely
the more recent data should be considered as having greater relevance.

Second, if we are interested in changes in the the estimated present
parameters—that is, in a time series of moving averages going forward—
then the sharp distinction between sample N − 1 (counted in the average)
and sample N (not counted) is an undesirable feature.

To understand this latter point, imagine that one data point xj is a large
positive fluctuation. It first affects the SMA as an uptick when it is first
observed (that is, j = 0). Much later, when it goes from j = N − 1 to j = N
it produces an equal downtick in the SMA. That downtick is essentially
spurious: It conveys no new information about the present parameters; it
is an entirely predictable consequence of old data falling off the end of the
measurement window.

2 Weighted Averages in General

One can mitigate both of SMA’s undesirable features by choosing not uniform
weights wi, but weights which taper (generally smoothly and monotonically)
towards zero to the past, but that still sum to unity. So,

x̂ ≡
∞∑
i=0

wixi,
∞∑
i=0

wi = 1, w0 > w1 > w2 > · · · (6)

If we are unhappy with sums that go to infinity, we can further impose a
condition of compact support (finite sliding window width),

wi = 0 for i ≥M (7)

for some value M .
For any choice of weights, equation (6) remains an unbiased estimator,

because equation (2) (with now N =∞) still goes through. Similarly, equa-
tion (3) for the variance of the estimator x̂ goes through (except for the
last equality specializing to SMA). Since this variance, Var(x̂), is a quantity
to be made small, equation (3) shows that we should make

∑
iw

2
i as small
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as possible. In this connection it is useful to define a “variance reduction
factor”,

Neff ≡

(∑
i

w2
i

)−1

, (8)

which is the factor by which the estimate Var(x̂) is smaller than the single
point variance Var(x). In the case of SMA, Neff = N , as we have seen.

2.1 Calculation of the Bias of the Variance Estimator

Here is the promised derivation of equation (5) in a general setting: Define
x and x′ as the mean and fluctuating parts of x, so that

xi ≡ x+ x′i, 〈x′i〉 = 0, 〈x′ix′j〉 = δijVar(x), (9)

(the last equality making the assumption that the fluctuation values x′i are
i.i.d.) Then,

〈
V̂ar(x)

〉
=

〈
∞∑
i=0

wix
2
i −

(
∞∑
i=0

wixi

)2〉

=
∞∑
i=0

wi

〈
(x+ x′i)

2
〉
−

〈(
∞∑
i=0

wi(x+ x′i)

)(
∞∑
j=0

wj(x+ x′j)

)〉

=

(
x2 +

∞∑
i=0

wi

〈
x′

2
i

〉)
−

(
x2 +

∞∑
i,j=0

wiwj 〈x′ix′j〉

)

=

(
1−

∞∑
i=0

w2
i

)
Var(x) =

(
Neff − 1

Neff

)
Var(x)

(10)

We see that making Neff large not only minimizes the variance of x̂ but also

minimizes the bias of its estimator V̂ar(x).

2.2 A List of Desiderable Properties

Thus far, we know that we must have
∑

iwi = 1, and we have seen that
maximizing Neff minimizes the variance and bias of the estimator x̂. For
practical reasons, we may want to specify or the window size M in equation
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(7). Monotonicity is good thing, because it supports the principle that older
data is less relevant. What else should be on our list of desirable properties?

We can formalize the idea that data more recent on average is more
relevant than data older on average, and effect this by seeking to minimize a
moment of the weights, for example,

Ln ≡ 〈in〉 =
∑
i

inwi (11)

We will refer to L1 = 〈i〉 as the estimator lag of the moving average. The
estimator lag of the SMA is easily calculated to be (M − 1)/2, that is, the
halfway point (or center of mass) in its interval of compact support.

We can also formalize the previous discussion of the time-smoothness of x̂
as old data moves through the sliding window (and possibly drops discontin-
uously off the end). Write as x̂t the value of the moving average at timestep
t, that is,

x̂t =
∞∑
i=0

xt−iwi, (12)

Then, for the difference of two consecutive moving averages, we have

∆x̂t ≡ x̂t − x̂t−1 = xtw0 +
∞∑
i=1

xt−i(wi − wi−1) (13)

Now taking the variance of equation (13),

Var(∆x̂) =

[
w2

0 +
∞∑
i=0

(wi − wi+1)2

]
Var(x) ≡

[
w2

0 + S2
]

Var(x) (14)

The first term in square brackets, w2
0, is the necessary result of adding new

present information to the estimate. The summation term, which we denote
S2 and refer to as the “timestep variance”, represents the undesirable time
fluctuation in the estimate x̂t that does not reflect any new information; we
may wish to minimize it.

Typically, both w2
0 and S2 turn out to be much smaller than 1/Neff, so,

in magnitude, they contribute only negligibly to Var(x̂). Nevertheless, they
become important when we are interested in x̂t (equation (12)) as a time
series, and in particular interested in its point-to-point change. Equation
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(14) shows that these “upticks” or “downticks” will depend exclusively on
new information only if S2 � w2

0.
To summarize, here is our list of desirable attributes for moving averages.

We will see in subsequent sections that it is not possible to have all of these
properties at the same time—we will have to make tradeoffs.

1. Normalization:
∑

iwi = 1 must always be true.

2. Monotonicity: require wi ≥ wi+1

3. Compact support: minimize M such that wi = 0, i ≥M

4. Variance reduction factor: maximize Neff = 1
/∑

iw
2
i

5. Timestep variance: minimize S2 =
∑

i(wi+1 − wi)
2; or at least require

S2 � w2
0

6. Estimator lag: minimize L1 ≡ 〈i〉 =
∑

i iwi

3 SMA and EWMA Derived from Principles

3.1 Simple Moving Average (SMA)

We here show that the simple moving average is the weighted average that
maximizes Neff, the variance reduction factor, for a window limited to M
samples (i.e., for fixed compact support); and that it achieves Neff = M . The
proof is via a Lagrange multiplier to impose the normalization contraint:

L =
M−1∑
i=0

w2
i − 2λ

(
M−1∑
i=0

wi − 1

)
∂L
∂wi

= 0 =⇒ wi = λ =
1

M

=⇒ Neff = M

(15)

The estimator lag of the SMA is readily calculated to be L1 = 〈i〉 =
1
2
(Neff − 1). To see that the SMA has a poor (i.e., large) timestep variance,

note that S2 = (wM − wM−1)2 = w2
M−1 = w2

0, which is not � w2
0.
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3.2 Exponentially Weighted Moving Average (EWMA)

We here show that the exponentially weighted moving average is the weighted
average that minimizes the timestep variance S2 for a specified variance re-
duction factor Neff. Proof:

L =
∞∑
i=0

(wi+1 − wi)
2 − 2λ1

(
∞∑
i=0

wi − 1

)
+ λ2

(
∞∑
i=0

w2
i −

1

Neff

)
∂L
∂wi

= 0 =⇒ wi+1 = (2 + λ2)wi − wi−1 − λ1, i = 1, . . . ,∞
(16)

This is a second order inhomogeneous linear recurrence. Its homogeneous
solutions are

wi ∝ ri±, where r± =
1

2

[
(2 + λ2)±

√
λ2(λ2 + 4)

]
(17)

We note that r+r− = 1, so only r− takes on values in the range (0, 1) that
give normalizable solutions. A particular solution (to be added to the ho-
mogeneous solution) is wi = constant = λ1/λ2, so normalizability implies
λ1 = 0. With some algebra, we can eliminate λ2 in favor of Neff giving the
solution,

wi =

(
2

1 +Neff

)(
Neff − 1

Neff + 1

)i

, i ≥ 0 (18)

More algebra gives the achieved minimum value S2 = w2
0/Neff. As desired,

we have S2 � w2
0 when Neff � 1. In that same limit equation (18) can be

written

wi ≈
(

2

1 +Neff

)
exp

[
− i

(Neff/2)

]
(19)

The estimator lag of the EWMA, equation (18), is L1 = 〈i〉 = 1
2
(Neff − 1),

which is the same as the SMA with the same Neff.
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4 Better Moving Averages

4.1 Linearly Weighted Moving Average (LWMA)

What weighted average minimizes the estimator lag L1 for fixed variance
reduction factor Neff? We have:

L =
∞∑
i=0

iwi − λ1

(
∞∑
i=0

wi − 1

)
+ 1

2
λ2

(
∞∑
i=0

w2
i −

1

Neff

)
(20)

which implies for all i ≥ 0,

wi =
λ1 − i
λ2

(21)

Since w0 > 0, wi must become negative for some positive i. However, since
the equations for the wi’s are independent of one another, we can simply
allow negative wi’s to “pin” with the constraint wi = 0 for i ≥ M , for some
M . A normalized solution is then

wi =
2

M(M + 1)
(M − i), 0 ≤ i ≤M, (22)

a linear ramp from 2/(M+1) to zero. This linearly weighted moving average
or LWMA (as it is known to stock traders, also called just WMA) has the
variance reduction factor

Neff =
3M(M + 1)

2(2M + 1)
⇔ M =

1

6

[
(4Neff − 3) +

√
16Neff

2 + 9
]

(23)

Thus we can specify Neff and choose M as the next larger integer to equation
(23). Or, since we are getting compact support automatically, we can instead
choose a window size M and achieve (for large M), Neff ≈ 3

4
M . Note that,

for M � 1, the LWMA has a standard deviation σ(x̂) =
√

Var(x)/Neff that
is only about 15% larger than the simple moving average with the same M .

The estimator lag of equation (22) is

L1 =
M∑
i=0

iwi =
M − 1

3
, (24)

somewhat better (i.e., more weighted to the present) than simple moving
average’s (M − 1)/2.
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The timestep variance of equation (22) is

S2 =
M−1∑
i=0

(wi − wi+1)2 =
4

M(M + 1)2
=
w2

0

M
� w2

0 for M � 1 (25)

This satisfies the desired criterion that the timestep variance be negligible,
even if it is not strictly minimized. Overall the LWMA seems like an excellent
general-purpose choice, superior in most ways to both the SMA (e.g., smaller
estimator lag and timestep variance) and the EWMA (e.g., compact support).

4.2 Lowered Exponential Moving Average (LEMA)

The EWMA has the disadvantage of formally requiring an infinite number
of data points to the past. In reality, one has only finite data. A common
practice is to use the first M (say) EWMA weights and renormalize,

x̂ =
M−1∑
i=0

wixi

/
M−1∑
i=0

wi (26)

where the weights are given by equation (18). This practice does not have
much to recommend it. In particular, it negates the smoothness of the
EWMA and adds an unnecessary amount w2

M−1 to the timestep variance
S2.

A better idea, we now show, is to obtain compact support by using “low-
ered exponential” weights,

wi ∝ (ri − rM) =
1− r

1− (M + 1)rM +MrM+1
(ri − rM), 0 ≤ i ≤M (27)

Here the last equality introduces the normalization that makes the weights
sum to 1, while r in the range (0, 1) is the parameter analogous to the ratio
of successive terms in the EWMA. We can refer to equation (27) as a lowered
exponential moving average (LEMA).

Exact formulas for the properties of LEMA are complicated, but they
simplify in two relevant limits: If r is sufficiently less than one so as to make
rM neglible, then weights will have decayed effectively to zero before the
window size M is reached. In that case,

wi = (1− r)ri, 0 ≤ i ≤M (28)
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which is exactly equation (18) with

Neff =
1 + r

1− r
⇔ r =

Neff − 1

Neff + 1
(29)

So, in this limit, LEMA is equivalent to EWMA, with properties in terms of
Neff previously given.

The other limit is when r is sufficiently close to 1 so that 1−1/M < r < 1.
In this case, the weights have decayed by less than a single e-fold in M steps,
and the limiting formula for the weights as r → 1 is exactly equation (22), the
linearly weighted moving average, LWMA, described (and praised) above.

When neither limit holds, the LEMA interpolates naturally between the
two. Its variance reduction factor is

Neff =
1 + r

1− r
[1− rM(1 +M −Mr)]2

1− 2(1 + r)rM + [1 + 2r +M(1− r2)]r2M
(30)

in which the limit equation (29) is evident. The lag is given in general by

L1 =
2r −M(M + 1)rM + 2(M2 − 1)rM+1 −M(M − 1)rM+2

2(1− r)[1− (M + 1)rM +MrM+1]
(31)

A possible application of equations (30) and (31) is, for fixed M , to adjust r
until a desired small value for the estimator lag L1 is obtained (smaller than
the maximum value given by equation (24)), and then check to see of an
acceptably large value of Neff is obtained (in turn bounded by its maximum,
equation (23)). L1 and Neff will always be of the same order.

The timestep variance is given in general by

S2 =
w2

0

Neff

(
1 + rM

) (
1− (M + 1)rM +MrM+1

)2

(1− rM) [1− 2rM − 2rM+1 + (M + 1)r2M + 2r2M+1 −Mr2M+2]
(32)

For any M ≥ 2 and any 0 < r < 1, the last factor in equation (32) lies
between 0.73 and 1. Thus, when Neff � 1, we automatically get S2 � w2

0,
as desired.

5 Recommendations

Other than tradition, it is hard to think of a good justification for using ei-
ther the simple moving average (SMA) or the exponentially weighted moving
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average (EWMA) instead of one of the two alternatives that we have given
above, the linearly weighted moving average (LWMA) and lowered exponen-
tial moving average (LEMA).

The only disadvantage of our recommended linearly weighted moving
average (LWMA) is that, for fixed window size M , it has a standard deviation
σ(r̂) about 15% larger than the SMA with the same M . Its advantages are
its smaller estimator lag (it is more current) and, crucially, a small timestep
variance, so that artifacts due to old data moving through the sliding window
are insignificant (in contrast to the SMA).

The lowered exponential moving average (LEMA) naturally generalizes
EWMA to a finite window size M . It has an adjustable estimator lag L1.
When L1 is set significantly smaller than M , LEMA reduces to EWMA. In
the other limit of maximizing the variance reduction factor Neff, it reduces
to LWMA. Between these limits, it is the natural interpolation.
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